Optimization of quasi-phase-matched non-linear frequency conversion for diffusion bonding applications

ثبت نشده
چکیده

The diffusion bonding technique has many applications in non-linear frequency-conversion processes. Unfortunately, when used for bonding periodically poled crystals, the periodic patterns have to be very precisely matched for efficient conversion. We investigated theoretically and experimentally this effect, in two configurations of increasing the length or the thickness of a crystal. We found that the sensitivity to the relative periodic domain match is much more severe for the case of increasing the crystal length with respect to increasing its thickness. Furthermore, even for symmetric pump illumination with respect to the interface between two crystals, an asymmetric intensity distribution may be obtained in the second harmonic. We have experimentally measured the second harmonic power modulation caused by varying the relative domain match at the interface between two attached, but unbonded crystals. A novel configuration for the domain patterns is proposed, which limits the degradation of the generated light caused by the domain mismatch. PACS 42.65.Ky; 42.70.Mp; 77.84.-s

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides

Wavelength converters using quasi-phase matched LiNbO3 (QPM-LN) waveguides are recognized as key devices for future wavelength division multiplexing (WDM) systems. These converters provide unique characteristics such as the simultaneous conversion of WDM channels, a large signal bandwidth, and transparency as regards modulation format. In this review, we describe waveguide fabrication using the...

متن کامل

16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs.

Tunable 90-ps 15.6-17.6-microm coherent radiation was generated by means of difference-frequency mixing in diffusion-bonded-stacked GaAs. The sample consisted of 24 alternately rotated layers with a total length of 6 mm and with low optical loss to achieve third-order quasi-phase matching. The wavelength-tuning curve was close to the theoretical prediction, demonstrating that the bonding proces...

متن کامل

Widely linear and non-phase-matched optical-to-terahertz conversion on GaSe:Te crystals.

We demonstrate the widely linear and broadband terahertz (THz) generation on GaSe:Te crystals by femtosecond laser pulses. It was found that the dopant, Te atoms, in GaSe crystals significantly enhances the efficiency of THz generation, and its central frequency can be tuned by varying the crystal thickness through non-phase-matched optical rectification. Moreover, the wide-ranging linearity fo...

متن کامل

Low latency IIR digital filter design by using metaheuristic optimization algorithms

Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...

متن کامل

Modeling and Optimization of non - isothermal two- phase flow in the cathode gas diffusion layer of PEM fuel cell

In this paper, a non-isothermal two-phase flow in the cathode gas diffusion layer (GDL) of PEM fuel cell is modeled. The governing equations including energy, mass and momentum conservation equations are solved by numerical methods. Also, the optimal values of the effective parameters such as the electrodes porosity, gas diffusion layer (GDL) thickness and inlet relative humidity are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003